Classification using set-valued Kalman filtering and Levi's decision theory

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extended Set-valued Kalman Filter

Set-valued estimation offers a way to account for imprecise knowledge of the prior distribution of a Bayesian statistical inference problem. The set-valued Kalman filter, which propagates a set of conditional means corresponding to a convex set of conditional probability distributions of the state of a linear dynamic system, is a general solution for linear Gaussian dynamic systems. In this pap...

متن کامل

Joint target tracking and classification with particle filtering and mixture Kalman filtering using kinematic radar information

This paper considers the problem of joint maneuvering target tracking and classification. Based on recently proposed Monte Carlo techniques, a multiple model (MM) particle filter and a mixture Kalman filter (MKF) are designed for two-class identification of air targets: commercial and military aircraft. The classification task is carried out by processing radar measurements only, no class (feat...

متن کامل

Adaptive Classification by Variational Kalman Filtering

We propose in this paper a probabilistic approach for adaptive inference of generalized nonlinear classification that combines the computational advantage of a parametric solution with the flexibility of sequential sampling techniques. We regard the parameters of the classifier as latent states in a first order Markov process and propose an algorithm which can be regarded as variational general...

متن کامل

Interpreting lattice-valued set theory in fuzzy set theory

An interpretation of lattice-valued logic, defined by Titani, in basic fuzzy logic, defined by Hájek, is presented. Moreover, Titani’s axioms of lattice-valued set theory are interpreted in fuzzy set theory, under slight modifications of the fuzzy set theory axiomatics.

متن کامل

Kalman-filtering using local interactions

There is a growing interest in using Kalman-filter models for brain modelling. In turn, it is of considerable importance to represent Kalman-filter in connectionist forms with local Hebbian learning rules. To our best knowledge, Kalman-filter has not been given such local representation. It seems that the main obstacle is the dynamic adaptation of the Kalman-gain. Here, a connectionist represen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Systems, Man, and Cybernetics

سال: 1994

ISSN: 0018-9472

DOI: 10.1109/21.281429